boolean - How to simplify this propositional logic expression (DNF)? -
i simplified original problem point
((p∧¬r)∨(¬q∨r))∧((q∧¬r)∨(¬p∨r))
, , got stuck here. next step? help!!
i solving you.
hint-1: ((p∧q)∨r) = (pvr) ∧ (qvr)
hint-2: p ∧ true = p
hint-3: p v true = true
answer
it true in end. check once.
next step be
= [(p v (~q v r)) ^ ( ~r v (~q v r))] ^[(q v (~p v r)) ^ ( ~r v (~p v r))] = (p v ~q v r) ^ ( ~p v q v r) = r v ( (p v ~q) ^ ( q v ~p)) = r v (( q -> p ) ^ ( p -> q)) = r v (p <-> q)
whenever r true true. else
p q p<->q ------------------ f f t f t f t f f t t t
so conforms truth table. shown above trincot.
Comments
Post a Comment