Python code works 20 times slower than Java. Is there a way to speed up Python? -


i wrote program in python , in java search smallest integer solution of equation:

a^5+b^5+c^5+d^5=e^5 (expected output 133^5+110^5+84^5+27^5=144^5)

powers , roots either computed directly ("direct calculation" method) or computed , stored in array ("power lookup" method). fifth powers looked n5 = fifth_power[n]. fifth power root computed using binary search in array 'fifth_power`.

i running on netbeans if matters. takes:

30. s (python, direct) 20. s (python, lookup) 5.6 s (java, direct) 0.8 s (java, lookup) 

is there way boost python performance? not looking better math (sieving of kind). looking better implementation of "for each combination of a,b,c,d compute of powers, check if sum perfect power. if - print result".

is expected python runs 20 times slower java?

python 3.5

http://pastebin.com/qvthwgkm

from array import * import math import time  #python, bruteforce : ~30 s millis1 = int(round(time.time() * 1000)) keep_searching = true a=1 result="" while(keep_searching):     a+=1     b in range(1,a+1):         c in range(1,b+1):             d in range(1,c+1):                 sum=math.pow(a,5)+math.pow(b,5)+math.pow(c,5)+math.pow(d,5)                 root = math.pow(sum,0.2)                 e = round(root)                   e5 = math.pow(e,5)                                if(e5==sum):                     result="{}^5 + {}^5 + {}^5 + {}^5 = {}^5".format(int(a),int(b), int(c),int(d), int(e))                     keep_searching = false                     millis2 = int(round(time.time() * 1000))  print(result) print("found solution in {} ms".format(millis2-millis1))  #python, precompute powers: ~20 s millis3 = int(round(time.time() * 1000))   #fifth_power #175 enough size=176 fifth_power = [none] * size in range(size):     fifth_power[i]=long(math.pow(i,5))  millis4 = int(round(time.time() * 1000))    #returns  value if perfect power (32 returns 2)   #returns -1 if between perfect powers, -2 if greater max value in array, -3 if smaller min value in array  def check_perfect_power(number, min, max, fifth_power):       current=int((min+max)/2)     while(max>=min):         if(number==fifth_power[current]):             return current         elif(number>fifth_power[current]):             min=current+1             current=int((max+min)/2)         else:             max=current-1             current=int((max+min)/2)      if(min>=len(fifth_power)):                 return -2     if(max<0):         return -3      return -1    keep_searching = true a=0 result="" while(keep_searching):     a+=1     b in range(1,a+1):         c in range(1,b+1):             d in range(1,c+1):                 mymax=min(int(a*1.32)+1, size-1)                 e=check_perfect_power(fifth_power[a]+fifth_power[b]+fifth_power[c]+fifth_power[d], a, mymax, fifth_power)                 if(e>0):                     result="{}^5 + {}^5 + {}^5 + {}^5 = {}^5".format(int(a),int(b), int(c),int(d), int(e))                     keep_searching = false                     millis5 = int(round(time.time() * 1000))  print(result)      print("populated in {} ms, find solution in {} ms".format(millis4-millis3,millis5-millis4)) 

java 8:

http://pastebin.com/g4v3fhnd

import java.util.arraylist;  public class eu514 {     public static void main(string[] args) {         bruteforce();  //solution found bruteforce in 5600 ms.        prepopulate(); //solution found prepopulation in 761 ms.     }          public static void bruteforce(){ //java bruteforce                 long t2 = 0l;         long t1 = system.currenttimemillis();             boolean keepsearching = true;         int = 0;         long e = 0;         string solution = "";          while (keepsearching) {             a++;             (int b = 1; b <= a; b++) {                 (int c = 1; c <= b; c++) {                     (int d = 1; d <= c; d++) {                         long sum = (long) (math.pow(a, 5) + math.pow(b, 5) + math.pow(c, 5) + math.pow(d, 5)); //sum=a^5+b^5+c^5+d^5                          e = math.round(math.pow(sum, 0.2)); //e= sum^(1/5), rounded                         long e5 = (long) math.pow(e,5);    //e^5                          if(e5==sum){                             t2 = system.currenttimemillis();                             solution = + "^5 + " + b + "^5 + " + c + "^5 + " + d + "^5 = " + e + "^5";                             keepsearching = false;                         }                     }                 }             }         }         long delta = ((t2-t1));         system.out.println(solution+"\nsolution found bruteforce in "+delta+" ms.");         }      public static void prepopulate(){  //java prepopulate         long t2 = 0l;         long t1 = system.currenttimemillis();          int size = 176;         long[] powers = populatepowers(size);          boolean keepsearching = true;         int = 0;         int e = 0;         string solution = "";          while (keepsearching) {             a++;             (int b = 1; b <= a; b++) {                 (int c = 1; c <= b; c++) {                     (int d = 1; d <= c; d++) {                         long sum = powers[a] + powers[b] + powers[c] + powers[d];                         int max = (int) math.min(size - 1, (a * 1.32 + 1));                         e = checkifperfectpower(sum, a, max, powers);                         if (e > 0) {                             t2 = system.currenttimemillis();                             solution = + "^5 + " + b + "^5 + " + c + "^5 + " + d + "^5 = " + e + "^5";                             keepsearching = false;                         }                     }                 }             }         }         long delta = ((t2-t1));         system.out.println(solution+"\nsolution found prepopulation in "+delta+" ms.");     }      public static long[] populatepowers(int max){         long[] powers = new long[max];         (int = 0; < powers.length; i++) {             powers[i]=(long) math.pow(i,5);         }                 return powers;     }      public static int checkifperfectpower(long number, int min, int max, long[] arr){         int current =((min+max)/2);         while(max>=min){             if(number==arr[current]){                 return current;             }else if(number>arr[current]){                 min = current + 1;                 current = (max + min) / 2;                             }else{                 max=current-1;                 current=(max+min)/2;             }         }         if(min>=arr.length) return -2;         if(max<0) return -3;         return -1;                   }    } 

from array import * import time import numpy np  #python, bruteforce : ~30 s millis1 = int(round(time.time() * 1000)) keep_searching = true = 1 result = "" while(keep_searching):     += 1     a_pow = ** 5     b in xrange(1, a+1):         b_pow = b ** 5         c in xrange(1, b+1):             c_pow = c ** 5             d in xrange(1, c+1):                 d_pow = d ** 5                 sum_pow = a_pow + b_pow + c_pow + d_pow                 root = sum_pow ** 0.2                 e = round(root)                   e5 = e ** 5                               if(e5 == sum_pow):                     result="{}^5 + {}^5 + {}^5 + {}^5 = {}^5".format(a, b, c, d, e)                     keep_searching = false                     millis2 = int(round(time.time() * 1000))  print(result) print("found solution in {} ms".format(millis2-millis1)) 

python 2.7, code optimizations

133^5 + 110^5 + 84^5 + 27^5 = 144.0^5 found solution in 8333 ms

it little different cpu cpu.


Comments

Popular posts from this blog

javascript - Thinglink image not visible until browser resize -

firebird - Error "invalid transaction handle (expecting explicit transaction start)" executing script from Delphi -

Sound is not coming out while implementing Text-to-speech in Android activity -